SENIOR PAPER: YEARS 11,12

Tournament 39, Northern Spring 2018 (O Level)
© 2018 Australian Mathematics Trust
Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. An angle bisector and an altitude emanating from the same vertex of a triangle divide the opposite side into three parts. Is it possible that a new triangle may be constructed from those three parts?
(3 points)
2. Four positive integers are given such that each of them is divisible by the greatest common divisor of the other three numbers, and the least common multiple of any three is divisible by the fourth number. Prove that the product of these four numbers is a perfect square.
(4 points)
3. Two circles Γ_{1} and Γ_{2}, with centres O_{1} and O_{2} respectively, touch externally at point T. A common tangent touches Γ_{1} at point A and Γ_{2} at point B. A common tangent to both circles at point T meets the line $A B$ at point M. Suppose $A C$ is a diameter of Γ_{1}. Prove that $C M$ and $A O_{2}$ are perpendicular to each other.
(4 points)
4. There is a checker in the corner square of an 8×8 chessboard. Petya and Vasya take turns moving the checker. Petya starts first, and on his turn he moves as a chess queen, where only the final square that the checker is moved over is considered used. Vasya on his turn makes a double move as a chess king, where both squares moved over are considered used. The checker cannot be moved over a used square. The initial square is also considered used. The player who cannot make a move loses. Who of the boys can play so that he will win for sure, no matter how his opponent moves?
(5 points)
5. A convex polyhedron is given with exactly three faces meeting at each vertex. Each face of the polyhedron is coloured red, yellow or blue. The vertices, where the faces of all three colours meet, are called multicoloured. Prove that the number of multicoloured vertices is even.
